Bone marrow mesenchymal stem cell-derived Wnt5a inhibits leukemia cell progression in vitro via activation of the non-canonical Wnt signaling pathway

نویسندگان

  • YA LI SHEN
  • QING LUO
  • YU XIA GUO
  • GAI HUAI ZHENG
  • JIE YU
  • YOU HUA XU
چکیده

Leukemia is one of the most common malignancies in humans worldwide; however, the molecular mechanism of the effect of bone marrow mesenchymal stem cells (bMSCs) on leukemia cell growth remains unclear. The present study demonstrated that Wnt5a protein expression was significantly induced in bMSCs via an adenovirus vector (P<0.01). The results showed that the proliferation of HL60 cells, a leukemia cell line, was significantly inhibited when the cells were stimulated with the culture supernatant of adeno-Wnt5a bMSCs compared with the culture supernatants of bMSCs and adeno-vector bMSCs for 24 or 48 h (P<0.01). The promoted maturation levels of HL60 cells were also observed following stimulation with the culture supernatant of adeno-Wnt5a bMSCs (P<0.01). However, no significant difference was identified in the proliferation and maturation of HL60 cells among the three groups stimulated with the culture supernatants containing a neutralization antibody against Wnt5a. Furthermore, the bMSC-derived Wnt5a was found to influence the maturation and proliferation of the HL60 cells by enhancing the non-canonical Wnt signaling pathway, while inhibiting the canonical Wnt signaling pathway by upregulating the expression of receptor tyrosine kinase-like orphan receptor 2 and calcium/calmodulin-dependent protein kinase II, and suppressing the expression of β-catenin and cyclin D1. In conclusion, bMSC-derived Wnt5a modifies the proliferation and maturation of HL60 cells via activation of the non-canonical Wnt signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

The Wnt5a/Ror2 pathway is associated with determination of the differentiation fate of bone marrow mesenchymal stem cells in vascular calcification.

Accumulating evidence have demonstrated that mesenchymal stem cells (MSCs) are involved in the initiation and progression of various vascular diseases. Canonical Wnt signaling controls the fate of MSCs, and plays an important role in vascular calcification. However, vascular calcification can be inhibited by the non-canonical Wnt signaling pathway...

متن کامل

Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs) are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the ma...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Wnt5a through Noncanonical Wnt/JNK or Wnt/PKC Signaling Contributes to the Differentiation of Mesenchymal Stem Cells into Type II Alveolar Epithelial Cells In Vitro

The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells is critical for reepithelization and recovery in acute respiratory distress syndrome (ARDS), and Wnt signaling was considered to be the underlying mechanisms. In our previous study, we found that canonical Wnt pathway promoted the differentiation of MSCs into AT II cells, however the role of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014